Despite extensive research on immune activation regulatory mechanisms, studies on immune suppression in psoriasis are limited. LAG3, a newly identified immune checkpoint, plays a crucial role in modulating immune responses and maintaining T regulatory (Treg) cell function. However, its involvement in psoriasis is unclear. We show that psoriasis is associated with reduced LAG3 expression in CD4 T cells and Treg cells. Further analysis revealed that the decline in LAG3 levels was linked to ADAM10/17-mediated proteolytic cleavage, which was upregulated in psoriasis. Clinical utilization of the IL-17A antagonist secukinumab, along with the in-vivo and in-vitro IL-17A-induced models, supported the potential of IL-17A to induce ADAM10/17 expression and trigger LAG3 cleavage. Through the Jurkat cell model, IL-17A was found to regulate ADAM10/17 expression by activating FOXM1. Additionally, treatment with the ADAM10/17 inhibitor GW280264X showed ameliorative effects on psoriasis-like mouse models and lipopolysaccharide-induced inflammation. Collectively, the findings of this study uncover the immune regulatory role of the ADAM10/17-LAG3 axis in psoriasis and highlight the therapeutic potential of targeting ADAM10/17 for psoriasis treatment.
Keywords: ADAM10/17; LAG3; Psoriasis; T cell.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.