Unlike boron, nitrogen-containing multi-resonance emitters with thermally activated delayed fluorescence, here we report boron, sulfur (B, S)-based multi-resonance emitters with room-temperature phosphorescence (RTP) by inserting thiophene into a 5,9-dithia-13b-boranaphtho[3,2,1-de]anthracene skeleton that simultaneously realizes large singlet-triplet energy splitting and strong spin-orbital coupling, leading to efficient room-temperature phosphorescence in an amorphous state. Unlike most RTP emitters with ultraviolet excitation, the multi-resonance RTP emitters exhibit strong phosphorescence under daily-use blue/white LED lamps owing to their intense absorption in the visible-light region (400-486 nm). Meanwhile, such RTP behavior can be tuned by the number and fusing pattern of the thiophene moieties, with the emitters containing thiophene linked to boron atoms via α-positions exhibiting bathochromatically shifted emissions and longer phosphorescence lifetimes (47.7-119.4 ms) than those with β-position linkages. Given these features, amorphous RTP films with different emission colors and lifetimes are fabricated by dispersing the emitters in a poly(methyl methacrylate) matrix, and their applications in multi-color anti-counterfeiting are presented. These findings thus open a way to develop multi-resonance emitters as a new family of pure organic RTP materials that can work in an amorphous state and under visible-light excitation.
This journal is © The Royal Society of Chemistry.