Burnout crisis in Chinese radiology: will artificial intelligence help?

Eur Radiol. 2024 Nov 20. doi: 10.1007/s00330-024-11206-4. Online ahead of print.

Abstract

Objectives: To assess the correlation between the use of artificial intelligence (AI) software and burnout in the radiology departments of hospitals in China.

Methods: This study employed a cross-sectional research design. From February to July 2024, an online survey was conducted among radiologists and technicians at 68 public hospitals in China. The survey utilized general information questionnaires, the Maslach Burnout Inventory-Human Services Survey (MBI-HSS) scale, and a custom-designed AI usage questionnaire. This study analyzed the correlation between AI software usage and occupational burnout, and general information was included as a control variable in a multiple linear regression analysis.

Results: The analysis of survey data from 522 radiology staff revealed that 389 (74.5%) had used AI and that 252 (48.3%) had used it for more than 12 months. Only 133 (25.5%) had not yet adopted AI. Among the respondents, radiologists had a higher AI usage rate (82.0%) than technicians (only 59.9%). Furthermore, 344 (65.9%) of the respondents exhibited signs of burnout. The duration of AI software usage was significantly negatively correlated with overall burnout, yielding a Pearson correlation coefficient of -0.112 (p < 0.05). Multiple stepwise regression analysis revealed that salary satisfaction, night shifts, duration of AI usage, weekly working hours, having children, and professional rank were the main factors influencing occupational burnout (all p < 0.05).

Conclusion: AI has the potential to significantly help mitigate occupational burnout among radiology staff. This study reveals the key role that AI plays in assisting radiology staff in their work.

Key points: Questions Although we are aware that radiology staff burnout is intensifying, there is no quantitative research assessing whether artificial intelligence software can mitigate this occupational burnout. Findings The longer staff use deep learning-based artificial intelligence imaging software, the less severe their occupational burnout tends to be. This result is particularly evident among radiologists. Clinical relevance In China, radiologists and technicians experience high burnout rates. Even if there is an artificial intelligence usage controversy, encouraging the use of artificial intelligence software in radiology helps prevent and alleviate this occupational burnout.

Keywords: Artificial intelligence; Burnout; Radiologists; Radiology.