Ring finger protein 128 (RNF128) is a transmembrane E3 ubiquitin ligase mainly localized in to the endoplasmic reticulum that is involved in various processes, including T cell anergy and tumor progression. However, the biological function of RNF128 in N-glycosylation remains unexplored. To investigate the functional role of RNF128, we used the proximity-directed biotin labeling method, and identified ribophorin I (RPN1) as a novel RNF128 substrate, demonstrating that RNF128 ubiquitinated RPN1 and promoted its degradation. RPN1 is a subunit of oligosaccharyltransferase complexes that facilitate N-glycosylation by binding substrates, and presenting them to the catalytic core. RPN1 also functions as an N-glycosylation-dependent chaperone that helps export a subset of newly synthesized glycoproteins to the plasma membrane. We found that RNF128 affects the N-glycosylation of model glycoproteins, such as sex hormone-binding globulin and asialoglycoprotein receptor 1. Furthermore, RNF128 inhibits the export of the opioid receptor mu 1 (OPRM1) to the plasma membrane, while expressing ubiquitination-incompetent RPN1 mutant, rescues the defect of OPRM1 export caused by RNF128 overexpression. Additionally, RNF128 influences colorectal cancer cell migration. The RNF128-dependent degradation of RPN1 likely inhibits the cell surface expression of specific glycoproteins, thereby affecting distinct cellular functions. This study contributes to understanding of the biological and functional roles of RNF128- and RPN1-dependent N-glycosylation.