A comparative study on the interaction of two tautomeric forms of sanguinarine (SANG), an alkaloid with therapeutic properties, with β-lactoglobulin (β-LG) protein was explored using spectroscopic and computational methods. The spectroscopic study reveals a high binding affinity for alkanolamine to monomeric β-LG (at pH = 9) as compared to iminium to dimeric β-LG (at pH = 6.2). Temperature dependent fluorescence study provides thermodynamic parameters for the binding process. Circular dichroism spectra showed changes in the secondary structure of the protein with major conformational transition from α-helix to β-sheets. Molecular docking and MD simulation validate the stable protein-drug complex during a 200 ns simulation period. All results clearly depict the differential interactions of two forms of SANG with β-LG protein. Overall, the characterization of SANG binding interactions with the whey milk protein provides valuable insights for pharmacological research and design of novel drug carriers based on β-LG protein.
Keywords: Fluorescence; Molecular dynamic simulation; Sanguinarine; Tautomer; β-Lactoglobulin.
Copyright © 2024 Elsevier B.V. All rights reserved.