Genome-wide identification of the eggplant jasmonate ZIM-domain (JAZ) gene family and functional characterization of SmJAZ10 in modulating chlorophyll synthesis in leaves

Int J Biol Macromol. 2024 Nov 18:137804. doi: 10.1016/j.ijbiomac.2024.137804. Online ahead of print.

Abstract

The jasmonate ZIM-domain (JAZ) plays a crucial role in regulating several economic traits in crops. Despite its importance, the characterization of the SmJAZ gene family in eggplant (Solanum melongena L.) has not been documented. In this study, we identified 13 SmJAZ distributed across 9 chromosomes, which were categorized into 5 subgroups based on phylogenetic analysis. Both of them possess TIFY-motif and CCT_2 domains with varying degrees of variation. Promoter cis-element analysis predicted 42 distributed cis-elements that respond to diverse signals. Gene expression analysis demonstrated that SmJAZ exhibited responsiveness to JA, ABA, NaCl, PEG, 4 °C, blue light, and UV-B treatments. Moreover, microRNA interaction predictions identified 150 potential miRNAs, among which ath-miR5021 was found to target 8 SmJAZ mRNAs. Yeast two-hybrid assays demonstrated that most of the SmJAZs were able to interact with SmMYC2 and SmNINJA and could form JAZ-JAZ complexes. Subcellular localization analysis unveiled a diverse array of intranuclear and extranuclear localization signals for SmJAZs. Overexpressing of SmJAZ10 could decrease the chlorophyll content of seedling leaves, and the transcriptome showed that genes related to chlorophyll synthesis, such as SmCHLH, SmPORA, and SmGLK2, underwent down-regulated expression. Overall, these findings serve as a valuable resource for leveraging JA signaling to enhance eggplant quality.

Keywords: Chlorophyll; Eggplant; SmJAZ gene family.