Staphylococcus aureus (S. aureus) is one of the notorious bacteria responsible for community and hospital infections. It can attach to the indwelling medical devices to form biofilms, which increases resistance to antibiotics and causes frequent chronic or persistent infections. This study attempted to determine the contribution and mechanism between the efflux pump norB gene and biofilm development in S. aureus. The expression levels of norB gene were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The norB gene knockout strain USA300 ΔnorB was constructed by homologous recombination technology. Crystal violet staining was utilized to detect the biofilm formation ability. Differentially expressed genes between norB knockout strains and wild-type strains were screened by RNA-Seq technology and verified by qRT-PCR. In comparison to strains with weak biofilm development capacity, higher expression levels of the norB gene were detected in S. aureus strains that showed strong biofilm forming capabilities. The expression levels of norB were significantly up-regulated in biofilm bacteria in comparison to planktonic bacteria. The knockout of norB gene reduced the biofilm formation ability in S. aureus. The deletion of norB gene up-regulated the expression of genes related to biofilm formation including agrD, sdrC, sdrD, agrB, agrC, fnbB, nuc, lytS, lrgA, sdrE, agrA and saeS, and down-regulated the expression of genes related to biofilm formation including clfA, icaR, sarA and rot. In conclusion, the efflux pump norB gene serves as a crucial role in the production of biofilm, thus rendering it a promising avenue for biofilm suppression.
Keywords: Biofilm; Efflux pump; Staphylococcus aureus; Transcriptomics; norB.
Copyright © 2024 Elsevier B.V. All rights reserved.