Advancements in early detection have demonstrated the significance of biomarkers as indicators of health and disease. Traditional detection methods often face limitations, such as low sensitivity and time consumption. Fluorescence-based techniques are considered promising approaches because of their noninvasiveness and rapid response. However, these conventional methods have some drawbacks, such as low quantum yield, photobleaching, and aggregation-caused quenching. Recently, aggregation-induced emission (AIE) has emerged as a potential alternative, characterized by luminous emission upon aggregation, thus improving detection sensitivity and stability. This review explores the recent advancements in AIE luminogens (AIEgens) in biomedical engineering, with a particular focus on their application in biomarker detection. Here, we discuss the different types of AIE mechanisms and their advantages in disease diagnosis and imaging. In addition, we summarize the development of various AIEgen-based probes for the detection of diverse biomarkers. Finally, we address the remaining challenges and future directions for AIE materials in modern biomedical engineering, emphasizing the potential of AIEgens in biomarker detection and disease diagnosis strategies.
Copyright © 2024 Elsevier B.V. All rights reserved.