Neonatal hypoxic-ischaemic encephalopathy (HIE) remains one of the major causes of neonatal death and long-term neurological disability. Due to its complex pathogenesis, there are still many challenges in its treatment. In our previous studies, we found that quercetin can alleviate neurological dysfunction after hypoxic-ischaemic brain injury (HIBI) in neonatal mice. As demonstrated through in vitro experiments, quercetin can inhibit the activation of the TLR4/MyD88/NF-κB signalling pathway and the inflammatory response in the microglial cell line BV2 after oxygen-glucose deprivation. However, the in-depth mechanism still needs to be further elucidated. In the present study, 7 day-old neonatal ICR mice or BV2 cells were treated with quercetin with or without the SIRT1 inhibitor EX527 via neurobehavioural, histopathological and molecular methods. In vivo experiments have shown that quercetin can significantly improve the performance of HI mice in behavioural tests, such as the Morris water maze, rotarod test and pole climbing test, and reduce HI insult-induced structural brain damage, cell apoptosis and hippocampal neuron loss. Quercetin also inhibited the immunofluorescence intensity of the microglial M1 marker CD16 + 32 and significantly downregulated the expression of the M1-related proteins iNOS, IL-1β and TNF-α. Moreover, quercetin increased the immunofluorescence intensity of the microglial M2 marker CD206 and significantly increased the expression of the M2-related proteins Arg-1 and IL-10. In addition, quercetin limits the nucleocytoplasmic translocation and release of microglial HMGB1 and further suppresses the activation of the downstream TLR4/MyD88/NF-κB signalling pathway. The above effects of quercetin are partially weakened by pretreatment with EX527. Similar results were found in in vitro experiments, and the mechanism further revealed that the rebalancing effect of quercetin on microglial polarization is achieved through the SIRT1-mediated reduction in HMGB1 acetylation levels. This study provides new and complementary insights into the neuroprotective effects of quercetin and a new direction for the treatment of neonatal HIE.
Keywords: HMGB1; Hypoxic-ischaemic encephalopathy; Microglial polarization; Quercetin; SIRT1.
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.