Tryptophan Metabolism-Regulating Probiotics Alleviate Hyperuricemia by Protecting the Gut Barrier Integrity and Enhancing Colonic Uric Acid Excretion

J Agric Food Chem. 2024 Nov 20. doi: 10.1021/acs.jafc.4c07716. Online ahead of print.

Abstract

The balance of gut microbiota affects uric acid synthesis and excretion, influencing the development of hyperuricemia. This study aimed to investigate the effects and mechanisms of probiotics on hyperuricemia and adenine- and potassium oxonate-induced colonic damage. After two months of gavage at 109 CFU/day, the probiotic strains Lactobacillus rhamnosus UA260 and Lactobacillus plantarum YU28, identified through in vitro screening, significantly reduced serum uric acid levels in hyperuricemia mice from 109.71 ± 56.33 to 38.76 ± 15.06 and 33.22 ± 6.91 μmol/L, respectively. These strains attenuated inflammatory, repaired gut barrier damage, and enhanced colonic uric acid transporter function, thereby promoting uric acid excretion. Furthermore, the probiotics significantly reshaped gut microbiota by increasing the abundance of beneficial bacteria, including Lactobacillus and Coprococcus, while modulating tryptophan, purine, and riboflavin metabolism. Changes in tryptophan metabolites, specifically indole-3-propionic acid and indole-3-acetic acid, were correlated with xanthine oxidase activity, colonic injury, and the expression of the uric acid transporter protein ABCG2 during treatment. Probiotics intervention activated aryl hydrocarbon receptor pathways. These findings suggest that probiotics alleviate hyperuricemia and colonic inflammatory by regulating gut microbiota composition and tryptophan microbial metabolite pathways. Probiotics that modulate tryptophan microbial metabolism may provide a potential strategy for treating or preventing hyperuricemia.

Keywords: hyperuricemia; indole-3-acetic acid; indole-3-propionic acid; probiotics; tryptophan metabolism; uric acid excretion.