The preparation of durable and efficient photoanodes for photoelectrochemical water oxidation is of great importance in promoting the development of green hydrogen production and artificial photosynthesis. Here, n-type BiVO4 was combined with p-type CuI to construct a CuI/BiVO4 (CIB-1) p-n heterojunction photoanode. The composite photoanode effectively overcame the drawbacks of BiVO4, such as low separation and injection efficiency of photogenerated electron-hole pairs. As a result, the CIB-1 had the highest photocurrent density of 1.98 mA cm-2, which was 2.5 times higher than pure BiVO4 with 0.79 mA cm-2 at 1.23 V (vs RHE) under AM 1.5G light irradiation. The CIB-1 had a lower Tafel slope of 23.2 mV decade-1 compared to 47.9 mV decade-1 for BiVO4, so the water oxidation kinetics was remarkably advanced over CuI/BiVO4. Based on DFT calculations, the OER overpotential of 0.480 V for CuI/BiVO4 was significantly lower than that of 1.546 V for BiVO4 due to the lower free energy from OH- to oxygen over CuI/BiVO4 compared to BiVO4.