Effect of dynamic high-pressure microfluidization on the structural, emulsifying properties, in vitro digestion and antioxidant activity of whey protein isolate

Int J Biol Macromol. 2024 Nov 17;283(Pt 2):137720. doi: 10.1016/j.ijbiomac.2024.137720. Online ahead of print.

Abstract

The effects of dynamic high-pressure microfluidization (DHPM) on the structural, emulsifying properties, in vitro digestion and antioxidant activity of whey protein isolate (WPI) were investigated. The results demonstrated that WPI treated with 100 MPa DHPM exhibited superior emulsification performance. This can be attributed to the conformational changes induced by 100 MPa DHPM in WPI, leading to a transformation from disordered structures to ordered structures and an increased exposure of fluorophore such as tryptophan residues and hydrophobic groups, reduced aggregation state and particle size of WPI. These factors facilitated the migration of WPI towards the oil-water interface, resulting in the formation of a robust and compact adsorption layer which reduces interfacial tension and enhances emulsification stability. Furthermore, it was observed that while DHPM did not significantly affect the digestibility of WPI, it did enhance exposure to antioxidant amino acids in the digestive products thereby enhanced their antioxidant properties. In summary, structural modification induced by DHPM treatment enhanced both emulsification and antioxidant properties of WPI. These findings highlight the significant potential of DHPM treatment for enhancing the quality of meat products with an emulsion-type structure.

Keywords: Dynamic high-pressure microfluidization; Emulsifying properties; Whey protein isolate.