Open fluidics, allowing liquid in a flow channel to interact with the external environment, is a revolutionary concept. However, fabricating a highly stable open fluidic device of arbitrary complexity, while maintaining reconfigurability, is still a challenge. This is achieved by the use of a patterned substrate and liquids that are covered with functional, readily available hydrophobic particles, providing great flexibility in the construction and use of open fluidic structures. Decorated with a coating of modified carbon nanotubes (CNTs) to encapsulate the fluids, the study capitalizes on the photothermal characteristics of CNTs to fabricate a device to probe the effects of temperature on tumor chemotherapy. The strategy substantially increases the availability and potential use of open fluidic devices.
Keywords: interfacial jamming; liquid plasticines; open fluidics; particle walls.
© 2024 Wiley‐VCH GmbH.