We present a realization of a magnetic sensor based on electromagnetically induced transparency (EIT) resonances observed in hot Rb vapor using lin∥lin polarized dichromatic light and evaluate scalar and vector capabilities of the sensor for measuring Earth-like magnetic fields. We demonstrate scalar measurement sensitivity of 2p T/H z in the 1-100 Hz spectral frequency band using a ~1 cm3 Rb vapor cell, significantly improving the performance for such a configuration if compared with earlier measurements of large magnetic fields. By using a single linearly polarized dichromatic optical field, we are also able to determine the direction of the magnetic field with respect to the light propagation direction and polarization, taking advantage of the symmetries of the interaction scheme. We accomplish that by combining the polarization-sensitive transmission measurements and sparse sensing machine learning techniques. A path for further improvement of the sensitivity and elimination of systematic effects, such as heading errors, is discussed.