Description of Streptococcus dentalis sp. nov., Streptococcus gingivalis sp. nov., and Streptococcus lingualis sp. nov., Isolated from Human Oral Cavities

J Microbiol. 2024 Nov 12. doi: 10.1007/s12275-024-00178-1. Online ahead of print.

Abstract

We isolated three novel strains, S1T, S2T, and S5T, from human oral cavities and identified them as distinct novel species. All these strains are facultatively anaerobic, Gram-stain-positive, and non-flagellated bacteria. Their optimal growth conditions for these strains were observed in Columbia broth (CB) at 37 °C, pH 7.0, and in the absence of NaCl. Phylogenetic analyses, employing the 16S rRNA gene and whole-genome sequencing, confirmed that all three strains belong to the genus Streptococcus. The 16S rRNA gene sequences of strains S1T, S2T, and S5T showed the highest similarities to Streptococcus parasanguinis, 98.57%, 99.05%, and 99.05%, respectively, and the orthologous average nucleotide identity (OrthoANI) values between the three strains and S. parasanguinis were 93.82%, 93.67%, and 94.04%, respectively. The pairwise OrthoANI values between the novel strains were 94.37% (S1T-S2T), 95.03% (S2T-S5T), and 94.71% (S1T-S5T). All strains had C20:1 ω9c and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as major cellular fatty acids. Additionally, diphosphatidylglycerol (DPG) and hydroxyphosphatidylethanolamine (OH-PE) were identified as major polar lipids. Menaquinone was undetected in all strains. The results from the phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses collectively indicated that strains S1T, S2T, and S5T represent three distinct novel species within the genus Streptococcus, and we propose the names Streptococcus dentalis sp. nov. for strain S1T (= KCTC 21234T = JCM 36526T), Streptococcus gingivalis sp. nov. for strain S2T (= KCTC 21235T = JCM 36527T), and Streptococcus lingualis sp. nov. for strain S5T (= KCTC 21236T = JCM 36528T).

Keywords: Streptococcaceae; Streptococcus dentalis; Streptococcus gingivalis; Streptococcus lingualis; Oral microbiome; Oral microbiota.