The shuttling of lithium polysulfides (LiPSs), sluggish reaction kinetics, and uncontrolled lithium deposition/stripping remain the main challenges in lithium-sulfur batteries (LSBs), which are aggravated under practical working conditions, i.e., high sulfur loading and lean electrolyte in large-capacity pouch cells. This study introduces a Ti3C2Tx MXene@CuCo2O4 (MCC) composite on a polyethylene (PE) separator to construct an ultrathin MXene@CuCo2O4/PE (MCCP) film. The MCCP functional separator can deliver superior LiPSs adsorption/catalysis capabilities via the MCC composite and regulate the Li+ deposition through a conductive Ti3C2Tx MXene framework, enhancing redox kinetics and cycling lifetime. When paired with sulfur/carbon (S/C) cathode and lithium metal anode, the resultant 10 Ah-level pouch cell with the ultrathin MCCP separator achieves an energy density of 417 Wh kg-1 based on the whole cell and a stable running of 100 cycles under practical operation conditions (cathode loading = 10.0 mg cm-2, negative/positive areal capacity ratio (N/P ratio) = 2, and electrolyte/sulfur weight ratio (E/S ratio) = 2.6 µL mg-1). Furthermore, through a systematic evaluation of the as-prepared Li-S pouch cell, the study unveils the operational and failure mechanisms of LSBs under practical conditions. The achievement of ultrahigh energy density in such a large-capacity lithium-sulfur pouch cell will accelerate the commercialization of LSBs.
Keywords: high‐energy‐density; lithium dendrites; lithium‐sulfur batteries; multifunctional separator; polysulfides shuttling.
© 2024 Wiley‐VCH GmbH.