The oral and gastrointestinal (GI) tract microbiota in humans is susceptible to geographical influences and represents vital factors impacting healthy aging. The northeastern region of China, characterized by distinct dietary and climatic conditions, significantly influences the human microbiome composition. However, the microbial structure of the entire long-lived population in this area has not been evaluated. This study recruited a cohort of 142 individuals aged 55-102 residing in Northeast China, and their oral and gut microbiota were evaluated using full-length 16S rRNA gene amplicon sequencing. The results indicate that the oral and GI tract microbiota of long-lived individuals showed reduced microbial taxonomic richness and evenness compared to sub-longevity individuals. With aging, the core species experience a gradual decline in abundance, while subordinate species show an increase. The long-lived population exhibited a heightened ability to enrich beneficial bacteria including Akkermansia, Alistipes, Parabacteroides, and Eubacterium coprostanoligenes in the GI tract, which are associated with host metabolism and have the potential to act as probiotics, reducing the risks of unhealthy aging in the northeast population. Bifidobacterium sp. and Lactobacillus salivarius have been found to coexist in both the oral cavity and the GI tract of long-lived individuals. We hypothesize that beneficial bacterial taxa from the oral cavity colonize the GI tract more extensively in long-lived individuals compared to those with a shorter lifespan. These findings pave the way for identifying probiotic strains that can promote healthy aging in Northeast China.
Keywords: Akkermansia; Streptococcus; 16S rRNA full-length sequencing; Gut microbiome; Healthy aging; Oral microbiome.
© 2024. The Author(s), under exclusive licence to American Aging Association.