Endosomes serve as signaling platforms for RIG-I ubiquitination and activation

Sci Adv. 2024 Nov 8;10(45):eadq0660. doi: 10.1126/sciadv.adq0660. Epub 2024 Nov 6.

Abstract

RIG-I-like receptors (RLRs) are cytosolic RNA sensors critical for antiviral immunity. RLR activation is regulated by polyubiquitination and oligomerization following RNA binding. Yet, little is known about how RLRs exploit subcellular organelles to facilitate their posttranslational modifications and activation. Endosomal adaptor TAPE regulates the endosomal TLR and cytosolic RLR pathways. The potential interplay between RIG-I signaling and endosomes has been explored. Here, we report that endosomes act as platforms for facilitating RIG-I polyubiquitination and complex formation. RIG-I was translocated onto endosomes to form signaling complexes upon activation. Ablation of endosomes impaired RIG-I signaling to type I IFN activation. TAPE mediates the interaction and polyubiquitination of RIG-I and TRIM25. TAPE-deficient myeloid cells were defective in type I IFN activation upon RNA ligand and virus challenges. Myeloid TAPE deficiency increased the susceptibility to RNA virus infection in vivo. Our work reveals endosomes as signaling platforms for RIG-I activation and antiviral immunity.

MeSH terms

  • Animals
  • DEAD Box Protein 58* / genetics
  • DEAD Box Protein 58* / metabolism
  • Endosomes* / metabolism
  • HEK293 Cells
  • Humans
  • Interferon Type I / metabolism
  • Mice
  • Signal Transduction*
  • Tripartite Motif Proteins / genetics
  • Tripartite Motif Proteins / metabolism
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism
  • Ubiquitination*

Substances

  • DEAD Box Protein 58
  • Interferon Type I
  • Tripartite Motif Proteins
  • Ubiquitin-Protein Ligases