Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions; identifying high-risk populations for targeted monitoring; providing early warning of the emergence and spread of antibiotic resistant bacteria and identifying novel antibiotic resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary we explore whether monitoring wastewater for antibiotic resistant genes and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in antibiotic resistant bacteria (ARBs) and antibiotic resistant genes (ARGs) and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.
Keywords: antibiotic resistance; surveillance; wastewater epidemiology.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.