Assembly of glioblastoma tumoroids and cerebral organoids: a 3D in vitro model for tumor cell invasion

Mol Oncol. 2024 Oct 30. doi: 10.1002/1878-0261.13740. Online ahead of print.

Abstract

Glioblastoma (GBM) has a fatal prognosis because of its aggressive and invasive characteristics. Understanding the mechanism of invasion necessitates an elucidation of the relationship between tumor cells and the tumor microenvironment. However, there has been a scarcity of suitable models to investigate this. In this study, we established a glioblastoma-cerebral organoid assembloid (GCOA) model by co-culturing patient-derived GBM tumoroids and human cerebral organoids. Tumor cells from the tumoroids infiltrated the cerebral organoids, mimicking the invasive nature of the parental tumors. Using time-lapse imaging, various invasion patterns of cancer cells within cerebral organoids resembling a normal tissue milieu were monitored. Both single- and collective-cell invasion was captured in real-time. We also confirmed the formation of an intercellular tumor network and tumor-normal-cell interactions. Furthermore, the transcriptomic characterization of GCOAs revealed distinct features of invasive tumor cells. Overall, this study established the GCOA as a three-dimensional (3D) in vitro assembloid model to investigate invasion mechanisms and interactions between tumor cells and their microenvironment.

Keywords: assembloid; glioblastoma; invasion; organoid; tumor microtube.