Comparison study of quantitative susceptibility mapping with GRAPPA and wave-CAIPI: reproducibility, consistency, and microbleeds detection

Jpn J Radiol. 2024 Oct 29. doi: 10.1007/s11604-024-01683-4. Online ahead of print.

Abstract

Purpose: We compared quantitative susceptibility mapping (QSM) with wave-CAIPI 9 × (QSM_WC9 ×) with reference standard QSM with GRAPPA 2 × (QSM_G2 ×) in two MR scanners. We also compared detectability of microbleeds in both QSMs to demonstrate clinical feasibility of both QSMs.

Materials and methods: This prospective study was approved by the institutional review board and written informed consent was obtained from each subject. Healthy subjects were recruited to evaluate intra-scanner reproducibility, inter-scanner consistency, and inter-sequence consistency of QSM_G2 × and QSM_WC9 × at 2 MR scanners. Susceptibility values measured with volume of interests (VOIs) were evaluated. Patients who were requested for susceptibility weighted imaging were also recruited in this study to measure microbleeds on QSM_G2 × and QSM_WC9 × . The number of microbleeds was compared between two QSMs.

Results: Total 55 healthy subjects (male 34, female 21, 38.3 years [23-79]) were included in this study. We investigated reproducibility and consistency of QSM_WC9 × by comparing reference standard QSM_G2 × in two MR scanners in this study, and high correlation (ρ, 0.93-0.97) and high intraclass correlation coefficient (ICC) (0.97-0.99) were obtained. Sixty patients (male 30, female 30; age, 55.4 years [21-85]) were finally enrolled in this prospective study. The ICC of the detected number of microbleeds between QSM_G2 × and QSM_WC9 × was 0.99 (0.98-0.99).

Conclusion: QSM_WC9 × and reference standard QSM_G2 × in two MR scanners showed good reproducibility and consistency in estimating magnetic susceptibilities. QSM_WC9 × and QSM_G2 × were also comparable in terms of microbleeds detection with good agreement of raters and high ICC.

Keywords: Generalized autocalibrating partially parallel acquisition; Microbleeds; Quantitative susceptibility mapping; Wave-CAIPI.