Pathogenic microorganisms often target seedlings shortly after germination. If plants exhibit resistance or resilience to pathogens, those exposed to pathogen challenge may grow further and form new unchallenged leaves. The purpose of this study was to examine disease resistance in the newly formed leaves of plants subjected to pathogen challenge. We used Arabidopsis thaliana and the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) as the model pathosystem. We found that Arabidopsis seedlings primarily challenged with the avirulent isolate Hpa exhibited enhanced disease resistance against the virulent isolate Hpa in newly formed rosette leaves (NFRLs). Our observations indicated that the transcript levels of the transcription factor gene WRKY70, which is essential for full resistance to the virulent isolate HpaNoco2, were elevated and maintained at high levels in the NFRLs. In contrast, the transcript levels of the salicylic acid marker gene PR1 and systemic acquired resistance-related genes did not exhibit sustained elevation. The maintenance of increased transcript levels of WRKY70 operated independently of non-expressor of pathogenesis-related gene 1. These findings suggest that prolonged upregulation of WRKY70 represents a defensive state synchronized with plant development to ensure survival against subsequent infections.
Keywords: Arabidopsis thaliana; Hyaloperonospora arabidopsidis; WRKY70; defense priming; plant immunity.
© 2024 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.