Adsorption of oxidized humic acid onto redox-inert mineral surfaces induces formation of hydroxyl radicals and carbon dynamics

Water Res. 2024 Oct 18;268(Pt A):122653. doi: 10.1016/j.watres.2024.122653. Online ahead of print.

Abstract

The dark formation of hydroxyl radicals (·OH) from O2 activation by reduced humic substances at oxic-anoxic interfaces has been extensively documented. However, their generation in oxic subsurface environments is typically overlooked due to the scarcity of electron donors, especially in the presence of minerals. In this study, the formation of ·OH during the adsorption of oxidized humic acids (HA) onto redox-inert minerals was investigated under oxic and pH-neutral conditions. Batch experiment results demonstrated that the adsorption of oxidized HA onto aluminum (hydr)oxide and Fe-free clay minerals induces the formation of ·OH (e.g., 16/28 μmol/g C) without the addition of exogenous electron donors. In contrast, the interaction of oxidized HA alone with O2 did not result in measurable ·OH production. The enhanced electron-donating capacity (EDC) and humification of the whole HA (mainly in adsorbed state) were measured after adsorption. The surface-catalyzed polymerization of oxidizable polyphenols in HA is proposed as the plausible mechanism for the observed EDC enhancement, which in turn triggers O2 activation for ·OH production. Furthermore, substantial chemical alterations of lignins and condensed aromatics within HA were observed, producing more compounds exhibiting higher molecular weight, aromaticity, O/C ratio, and nominal oxidation state of carbon. It is indicated that the contribution of oxidative polymerization outweighs ·OH oxidation in the molecular transformation of adsorbed HA. Overall, our findings extend the understanding of HA-induced ·OH production from oxic-anoxic interfaces to the oxic zone and present a novel pathway for the abiotic transformation of recalcitrant organic matter in subsurface environments with extensive surface water-groundwater interactions.

Keywords: Electron-donating capacity; Hydroxyl radicals; Mineral adsorption; Organic matter transformation; Oxidized humic acid.