Background: Haemonchus contortus (H. contortus), a nematode with global prevalence, poses a major threat to the gastrointestinal health of sheep and goats. In an effort to combat this parasite, a nanovaccine was created using a recombinant ADP-ribosylation factor 1 (ARF1) antigen encapsulated within poly lactic-co-glycolic acid (PLGA). This study aimed to assess the effectiveness of this nanovaccine in providing protection against H. contortus infection.
Methods: Fifteen goats were randomly divided into three groups. The experimental group received two doses of the PLGA encapsulated rHcARF1 (rHcARF1-PLGA) nanovaccine on days 0 and 14. Fourteen days after the second immunization, both the experimental and positive control groups were challenged with 8000 infective larvae (L3) of H. contortus, while the negative control group remained unvaccinated and unchallenged. At the end of the experiment on the 63rd day, all animals were humanly euthanized.
Results: The results showed that the experimental group had significantly higher levels of sera IgG, IgA, and IgE antibodies, as well as increased concentrations of cytokines, such as IL-4, IL-9, IL-17, and TGF-β, compared to the negative control group after immunization. Following the L3 challenge, the experimental group exhibited a 47.5% reduction in mean eggs per gram of feces (EPG) and a 55.7% reduction in worm burden as compared to the positive control group.
Conclusions: These findings indicate that the nanovaccine expressing rHcARF1 offers significant protective efficacy against H. contortus infection in goats. The results also suggest the need for more precise optimization of the antigen dose or a reassessment of the vaccination regimen. Additionally, the small sample size limits the statistical rigor and the broader applicability of the findings.
Keywords: ARF1; H. contortus; PLGA polymer; goats; immunomodulation; nanovaccine.