This study aims to propose a deep learning (DL)-based physical education course recommendation system by combining the Internet of Things (IoT) technology and DL, to improve the accuracy and personalization of recommendation. Firstly, IoT devices such as smart bracelets and smart clothing are used to monitor students' physiological data in real-time, and IoT sensors are utilized to sense the environment around students. Secondly, IoT devices capture students' social interactions with their peers, recommending socially oriented courses. Meanwhile, by integrating IoT data with students' academic data, course recommendations are optimized to match students' learning progress and schedule. Finally, Generative Adversarial Network (GAN) models, especially the improved Regularization Penalty Conditional Feature Generative Adversarial Network (RP-CFGAN) model, deal with data sparsity and cold start problems. The experimental results show that this model performs well in TopN evaluation and is markedly enhanced compared with traditional models. This study denotes that integrating IoT technology and GAN models can more accurately understand student needs and provide personalized recommendations. Although the model performs well, there is still room for improvement, such as exploring more regularization techniques, protecting user privacy, and extending the system to diverse platforms and scenarios.
Keywords: Conditional feature generative adversarial networks; Deep learning; Generative adversarial networks; Internet of Things; course recommendation.
© 2024 The Authors. Published by Elsevier Ltd.