Cerebral palsy (CP) is a neurological disorder that dissipates body posture and impairs motor functions. It may lead to an intellectual disability and affect the quality of life. Early intervention is critical and challenging due to the uncooperative body movements of children, potential infant recovery, a lack of a single vision modality, and no specific contrast or slice-range selection and association. Early and timely CP identification and vulnerable brain MRI scan associations facilitate medications, supportive care, physical therapy, rehabilitation, and surgical interventions to alleviate symptoms and improve motor functions. The literature studies are limited in selecting appropriate contrast and utilizing contrastive coupling in CP investigation. After numerous experiments, we introduce deep learning models, namely SSeq-DL and SMS-DL, correspondingly trained on single-sequence and multiple brain MRIs. The introduced models are tailored with specialized attention mechanisms to learn susceptible brain trends associated with CP along the MRI slices, specialized parallel computing, and fusions at distinct network layer positions to significantly identify CP. The study successfully experimented with the appropriateness of single and coupled MRI scans, highlighting sensitive slices along the depth, model robustness, fusion of contrastive details at distinct levels, and capturing vulnerabilities. The findings of the SSeq-DL and SMSeq-DL models report lesion-vulnerable regions and covered slices trending in age range to assist radiologists in early rehabilitation.
Keywords: Cerebral palsy; Deep learning; Early intervention; MRI coupling; Vulnerabilities.
© 2024. The Author(s).