RNA binding proteins ( RBPs ) control varied processes, including RNA splicing, stability, transport, and translation 1-3 . Dysfunctional RNA-RBP interactions contribute to the pathogenesis of human disease 1,4,5 , however, characterizing the nature and dynamics of multiprotein assemblies on RNA has been challenging. To address this, non-isotopic ligation-based ultraviolet crosslinking immunoprecipitation 6 was combined with mass spectrometry ( irCLIP-RNP ) to identify RNA-dependent associated proteins ( RDAPs ) co-bound to RNA with any RBP of interest. irCLIP-RNP defined landscapes of multimeric protein assemblies on RNA, uncovering previously unknown patterns of RBP-RNA associations, including cell-type-selective combinatorial relationships between RDAPs and primary RBPs. irCLIP-RNP also defined dynamic RDAP remodeling in response to epidermal growth factor ( EGF ), uncovering EGF-induced recruitment of UPF1 adjacent to HNRNPC to effect splicing surveillance of cell proliferation mRNAs. To identify the RNAs simultaneously co-bound by multiple studied RBPs, a sequential immunoprecipitation irCLIP ( Re-CLIP ) method was also developed. Re-CLIP confirmed binding relationships seen in irCLIP-RNP and detected simultaneous HNRNPC and UPF1 co-binding on RND3 and DDX3X mRNAs. irCLIP-RNP and Re-CLIP provide a framework to identify and characterize dynamic RNA-protein assemblies in living cells.