Lysosomal LRRC8 complex regulates lysosomal pH, morphology and systemic glucose metabolism

bioRxiv [Preprint]. 2024 Sep 23:2024.09.22.614256. doi: 10.1101/2024.09.22.614256.

Abstract

The lysosome integrates anabolic signalling and nutrient-sensing to regulate intracellular growth pathways. The leucine-rich repeat containing 8 (LRRC8) channel complex forms a lysosomal anion channel and regulates PI3K-AKT-mTOR signalling, skeletal muscle differentiation, growth, and systemic glucose metabolism. Here, we define the endogenous LRRC8 subunits localized to a subset of lysosomes in differentiated myotubes. We show LRRC8A regulates leucine-stimulated mTOR, lysosome size, number, pH, and expression of lysosomal proteins LAMP2, P62, LC3B, suggesting impaired autophagic flux. Mutating a LRRC8A lysosomal targeting dileucine motif sequence (LRRC8A-L706A;L707A) in myotubes recapitulates the abnormal AKT signalling and altered lysosomal morphology and pH observed in LRRC8A KO cells. In vivo , LRRC8A-L706A;L707A KI mice exhibit increased adiposity, impaired glucose tolerance and insulin resistance characterized by reduced skeletal muscle glucose-uptake, and impaired incorporation of glucose into glycogen. These data reveal a lysosomal LRRC8 mediated metabolic signalling function that regulates lysosomal activity, systemic glucose homeostasis and insulin-sensitivity.

Publication types

  • Preprint