3-D bioprinting is a promising technology to fabricate custom geometries for tissue engineering. However, most bioprintable hydrogels are weak and fragile, difficult to handle and cannot mimetic the mechanical behaviors of the native soft elastic tissues. We have developed a visible light crosslinked, single-network, elastic and biocompatible hydrogel system based on an acrylated triblock copolymer of poly(ethylene glycol) PEG and polycaprolactone (PCL) (PEG-PCL-DA). To enable its application in bioprinting of soft tissues, we have modified the hydrogel system on its printability and biodegradability. Furthermore, we hypothesize that this elastic material can better transmit pulsatile forces to cells, leading to enhanced cellular response under mechanical stimulation. This central hypothesis was tested using vascular conduits with smooth muscle cells (SMCs) cultured under pulsatile forces in a custom-made bioreactor. The results showed that vascular conduits made of PEG-PCL-DA hydrogel faithfully recapitulate the rapid stretch and recoil under the pulsatile pressure from 1 to 3 Hz frequency, which induced a contractile SMC phenotype, consistently upregulated the core contractile transcription factors. In summary, our work demonstrates the potential of elastic hydrogel for 3D bioprinting of soft tissues by fine tuning the printability, biodegradability, while possess robust elastic property suitable for manual handling and biomechanical stimulation.
Keywords: 3D bioprinting; elastic hydrogel; mechanical stimulation; smooth muscle cells; soft tissue.