Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses

Sci Rep. 2024 Oct 8;14(1):23134. doi: 10.1038/s41598-024-73587-2.

Abstract

De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.

Keywords: De novo mutations; Duplex sequencing; Extrachromosomal circular DNA; Mutation frequency; Mutational spectrum; Sperm DNA mutations.

MeSH terms

  • Adolescent
  • DNA Mutational Analysis / methods
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Male
  • Mutation Rate*
  • Mutation*
  • Polymorphism, Single Nucleotide
  • Sequence Analysis, DNA / methods
  • Spermatozoa* / metabolism
  • Sweden