Increased levels of extracellular matrix proteins associated with extracellular vesicles from brains of aged mice

Aging Cell. 2024 Oct 8:e14359. doi: 10.1111/acel.14359. Online ahead of print.

Abstract

Extracellular vesicles (EVs) are secreted by all major cell types of the brain, providing a mode of intercellular communication and a pathway for disposal of cellular debris. EVs help maintain healthy brain function, but may also contribute to diseases affecting the brain. EVs might contribute to aging of the brain, as aging-related processes such as inflammation and cellular senescence may alter EV cargo, promoting further inflammation and senescence. However, the effects of aging on brain EVs and the function of EVs in the aging brain remain poorly understood. To address this question, we measured the levels and protein cargo of EVs isolated from the brains of 4-, 12-, and 22-month-old C57BL/6J mice. We detected no changes in EV levels, but observed age-dependent changes in EV proteins. EV fractions from aged (22 month old) brains contained higher levels of extracellular matrix proteins than EV fractions from young (4 month old) brains, with intermediate levels in 12-month-old brains. Specifically, EV fractions from aged mice contained elevated levels of hyaluronan and proteoglycan link proteins 1 and 2 and several chondroitin sulfate proteoglycans (CSPGs). Analysis of extracellular matrix in several brain regions of aged mice revealed increased immunolabeling for the CSPG aggrecan, but reduced labeling with Wisteria floribunda agglutinin, which binds to chondroitin sulfate side chains of CSPGs. These data are consistent with prior studies showing changes to the composition of extracellular matrix in aged brains, and indicate a novel association of EVs with changes in the extracellular matrix of the aging brain.

Keywords: aging; extracellular matrix; extracellular vesicles.