The development of new ionic conductors meeting the requirements of current solid-state devices is imminent but still challenging. Hydrogen-bonded ionic co-crystals (HICs) are multi-component crystals based on hydrogen bonding and Coulombic interactions. Due to the hydrogen bond network and unique features of ionic crystals, HICs have flexible skeletons. More importantly, anion vacancies on their surface can potentially help dissociate and adsorb excess anions, forming cation transport channels at grain boundaries. Here, it is demonstrated that a HIC optimized by adjusting the ratio of zinc salt and imidazole can construct grain boundary-based fast Zn2+ transport channels. The as-obtained HIC solid electrolyte possesses an unprecedentedly high ionic conductivity at room and low temperatures (≈11.2 mS cm-1 at 25 °C and ≈2.78 mS cm-1 at -40 °C) with ultra-low activation energy (≈0.12 eV), while restraining dendrite growth and exhibiting low overpotential even at a high current density (<200 mV at 5.0 mA cm-2) during Zn symmetric cell cycling. This HIC also allows solid-state Zn||covalent organic framework full cells to work at low temperatures, providing superior stability. More importantly, the HIC can even support zinc-ion hybrid supercapacitors to work, achieving extraordinary rate capability and a power density comparable to aqueous solution-based supercapacitors. This work provides a path for designing facilely prepared, low-cost, and environmentally friendly ionic conductors with extremely high ionic conductivity and excellent interface compatibility.
Keywords: grain boundaries; hydrogen‐bonded ionic co‐crystals; solid‐state electrolytes.
© 2024 Wiley‐VCH GmbH.