Identification of an immune-related genes signature in lung adenocarcinoma to predict survival and response to immune checkpoint inhibitors

J Egypt Natl Canc Inst. 2024 Oct 7;36(1):30. doi: 10.1186/s43046-024-00236-0.

Abstract

Background: Although advances in immune checkpoint inhibitor (ICI) research have provided a new treatment approach for lung adenocarcinoma (LUAD) patients, their survival is still unsatisfactory, and there are issues in the era of response prediction to immunotherapy.

Methods: Using bioinformatics methods, a prognostic signature was constructed, and its predictive ability was validated both in the internal and external datasets (GSE68465). We also explored the tumor-infiltrating immune cells, mutation profiles, and immunophenoscore (IPS) in the low-and high-risk groups.

Results: As far as we are aware, this is the first study which introduces a novel prognostic signature model using BIRC5, CBLC, S100P, SHC3, ANOS1, VIPR1, LGR4, PGC, and IGKV4.1. According to multivariate analysis, the 9-immune-related genes (IRGs) signature provided an independent prognostic factor for the overall survival (OS). The low-risk group had better OS, and the tumor mutation burden (TMB) was significantly lower in this group. Moreover, the risk scores were negatively associated with the tumor-infiltrating immune cells, like CD8+ T cells, macrophages, dendritic cells, and NK cells. In addition, the IPS were significantly higher in the low-risk group as they had higher gene expression of immune checkpoints, suggesting that ICIs could be a promising treatment option for low-risk LUAD patients.

Conclusion: The combination of these 9-IRGs not only could efficiently predict overall survival of LUAD patients but also show a powerful association with the expression of immune checkpoints and response to ICIs based on IPS; hoping this model paves the way for better stratification and management of patients in clinical practice.

Keywords: Immune checkpoint inhibitor; Immune-related signature; Immunotherapy; Lung adenocarcinoma; Tumor immune microenvironment.

MeSH terms

  • Adenocarcinoma of Lung* / drug therapy
  • Adenocarcinoma of Lung* / genetics
  • Adenocarcinoma of Lung* / immunology
  • Adenocarcinoma of Lung* / mortality
  • Adenocarcinoma of Lung* / pathology
  • Aged
  • Biomarkers, Tumor / genetics
  • Computational Biology / methods
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Immune Checkpoint Inhibitors* / therapeutic use
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / immunology
  • Lung Neoplasms* / mortality
  • Lung Neoplasms* / pathology
  • Lymphocytes, Tumor-Infiltrating / immunology
  • Male
  • Middle Aged
  • Mutation
  • Prognosis
  • Transcriptome

Substances

  • Immune Checkpoint Inhibitors
  • Biomarkers, Tumor