Fluorescent Ionic Liquid Aggregates: A Self-Assembled Approach for Pesticide Detection and Catalysis

J Agric Food Chem. 2024 Oct 5. doi: 10.1021/acs.jafc.4c06865. Online ahead of print.

Abstract

The unregulated use of pesticides, industrial discharge of heavy metals, waste, and agricultural runoff may contaminate surface water and groundwater, consequently threatening ecosystems and human health. Thus, the sensitive detection and degradation of pesticides are essential for safety. In this context, herein, we have developed benzimidazolium-based fluorescent surfactant assemblies TA-1/SDS and TA-2/SDBS, which exhibit aggregation-induced emission enhancement in an aqueous medium. The aggregates (TA-1/SDS and TA-2/SDBS) displayed a turn-on emission response upon interaction with carbendazim and azamethiphos with limits of detection 7.5 and 7.8 nM, respectively. The FE-SEM and AFM studies revealed that TA-1/SDS and TA-2/SDBS undergo self-assembly with the addition of AZA and CBZ, resulting in the formation of dendritic structures. In addition to the quantification of AZA and CBZ, TA-1/SDS and TA-2/SDBS have also been evaluated to degrade both pesticides and validated using 31P NMR spectroscopy and LC-MS spectrometry.

Keywords: catalytic degradation; environmental remediation; fluorescent sensor; pesticides; surfactant assemblies.