The fatigue performance of laser powder bed fusion-fabricated Ti-6Al-4V alloy was investigated using four-point bending testing. Specifically, the effects of keyhole and lack-of-fusion porosities along with various surface roughness parameters, were evaluated in the context of pore circularity and size using 2D optical metallography. Surface roughness of Sa = 15 to 7 microns was examined by SEM, and the corresponding fatigue performance was found to vary by 102 cycles to failure. The S-N curves for the various defects were also correlated with process window examination in laser beam power-velocity (P-V) space. Basquin's stress-life relation was well fitted to the experimental S-N curves for various process parameters except keyhole porosity, indicating reduced importance for LPBF-fabricated Ti-6Al-4V alloy components.
Keywords: Basquin’s law fitting; Ti-6Al-4V alloy; additive manufacturing; fatigue performance; laser powder bed fusion; porosity defects; surface roughness.