Applying cold to a bone injury can aid healing, though its mechanisms are complex. This study investigates how cold therapy impacts bone repair to optimize healing. Cold was applied to a rodent bone model, with the physiological responses analyzed. Vasoconstriction was mediated by an increase in the transient receptor protein channels (TRPs), transient receptor potential ankyrin 1 (TRPA1; p = 0.012), and transient receptor potential melastatin 8 (TRPM8; p < 0.001), within cortical defects, enhancing the sensory response and blood flow regulation. Cold exposure also elevated hypoxia (p < 0.01) and vascular endothelial growth factor expression (VEGF; p < 0.001), promoting angiogenesis, vital for bone regeneration. The increased expression of osteogenic proteins peroxisome proliferator-activated receptor gamma coactivator (PGC-1α; p = 0.039) and RNA-binding motif protein 3 (RBM3; p < 0.008) suggests that the reparative processes have been stimulated. Enhanced osteoblast differentiation and the presence of alkaline phosphatase (ALP) at day 5 (three-fold, p = 0.021) and 10 (two-fold, p < 0.001) were observed, along with increased osteocalcin (OCN) at day 10 (two-fold, p = 0.019), indicating the presence of mature osteoblasts capable of mineralization. These findings highlight cold therapy's multifaceted effects on bone repair, offering insights for therapeutic strategies.
Keywords: bone healing; cold; hypoxia; osteoblasts; osteogenesis; shock proteins; tissue engineering; vasculature.