Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism of humoral allograft injury. FCGR3A V176/F176 polymorphism influences ADCC activity. Additionally, NK cell FcγRIIc expression, dictated by the Q13/STP13 polymorphism, was never investigated in kidney transplantation. To assess the clinical relevance of FCGR2C Q13/STP13 polymorphism in conjunction with FCGR3A V176/F176 polymorphism, 242 kidney transplant recipients were genotyped. NK cell Fc gamma receptor (FcγR) expression and ADCC activity were assessed. RNA sequencing was performed on kidney allograft biopsies to explore the presence of infiltrating FcγR+ NK cells. The FCGR2C Q13 allele was enriched in antibody-mediated rejection patients. FcγRIIc Q13+ NK cells had higher ADCC activity than FcγRIIc Q13- NK cells. In combination with the high-affinity FCGR3A V176 allele, Q13+V176+ NK cells were the most functionally potent. Q13+ was associated with worse microvascular inflammation and a higher risk of allograft loss. Among V176- patients, previously described in the literature as lower-risk patients, Q13+V176- showed a lower graft survival than Q13-V176- patients. In antibody-mediated rejection biopsies, FCGR2C transcripts were enriched and associated with ADCC-related transcripts. Our results suggest that FCGR2C Q13 in addition to FCGR3A V176 is a significant risk allele that may enhance NK cell-mediated ADCC and contribute to allograft injury and poor survival.
Keywords: Fc gamma receptor; alloantibody; allograft injury; antibody-mediated rejection; cytotoxicity; kidney transplantation; natural killer cell.
Copyright © 2024 American Society of Transplantation & American Society of Transplant Surgeons. Published by Elsevier Inc. All rights reserved.