One pot sensor by multiplexing in the array is an attractive system for rapid discrimination of multiple analytes. Multiplexing can be achieved in two ways, i.e., using multiple signal transducers or adding sequential agents to the sensor media. Herein, we have used a combination of both multichannel and sequential ON-OFF strategies for the discrimination of different bioanalytes. The sensor array was constructed by implementing positively charged MoS2 as a receptor and different fluorescent proteins possessing distinguishable emission profiles as signal transducers. The sensing setup was constructed with the interaction between oppositely charged MoS2 and the host-guest combination between a cationic headgroup of MoS2 and Cucurbit [7] uril (CB7) to alter the fluorescence of signal transducers in situ noncovalently. Electrodynamic analysis and optical assays suggest that the electrostatic interaction played a major role in the modulation of the fluorescence outcomes in the array. Both cationic and anionic proteins were discriminated at a 50 nM concentration. The detection limit of the sensor array by using β-gal protein was found to be 1 nM. The sensor array was further implemented for the discrimination of normal and diseased cell lines and lysates, which indicates the versatile detection ability of this reported sensor array.
Keywords: 2D MoS2; biosensing; cell lines and lysates; host−guest interaction; sensor arrays.