Structural Regulation Enables High Interfacial Functionality for Ni-Rich Single-Crystalline Cathodes

ACS Appl Mater Interfaces. 2024 Sep 24. doi: 10.1021/acsami.4c10398. Online ahead of print.

Abstract

Ni-rich single-crystalline layered cathodes have garnered significant attention due to their high energy density and thermal stability. However, they experience severe capacity degradation caused by lattice strain and interfacial side reactions during practical applications. In this study, an effective yttrium modification method is employed to stabilize the structure of Ni-rich single-crystalline LiNi0.83Mn0.05Co0.12O2 (SC-NMC83) to solve these issues. This innovative approach successfully immobilizes oxygen within the material, preventing crack formation while simultaneously broadening the diffusion path of Li+. The yttrium-modified sample (SC-NMC83-Y) exhibits a superior capacity retention compared to the SC-NMC83 sample, with values of 90% and 76.1% after 100 cycles, respectively. This work demonstrates the promising potential of a doping strategy for Ni-rich single-crystalline cathodes and paves a pathway for its practical implementation, such as all-solid-state batteries.

Keywords: Ni-rich cathode; engineering CEI; low migration energy barrier; structural stability; yttrium modification.