Automatic polarity prediction is a challenging assessment issue. Even though polarity assessment is a critical topic with many existing applications, it is probably not an easy challenge and faces several difficulties in natural language processing (NLP). Public polling data can give useful information, and polarity assessment or classification of comments on Twitter and Facebook may be an effective approach for gaining a better understanding of user sentiments. Text embedding techniques and models related to the artificial intelligence field and sub-fields with differing and almost accurate parameters are among the approaches available for assessing student comments. Existing state-of-the-art methodologies for sentiment analysis to analyze student responses were discussed in this study endeavor. An innovative hybrid model is proposed that uses ensemble learning-based text embedding, a multi-head attention mechanism, and a combination of deep learning classifiers. The proposed model outperforms the existing state-of-the-art deep learning-based techniques. The proposed model achieves 95% accuracy, 97% recall, having a precision of 95% with an F1-score of 96% demonstrating its effectiveness in sentiment analysis of student feedback.
Keywords: Attention model; Student feedback; Text embedding; Deep learning-based hybrid model; Polarity classification.
©2024 Malik et al.