Continuous ketone monitoring: Exciting implications for clinical practice

Diabetes Obes Metab. 2024 Sep 24. doi: 10.1111/dom.15921. Online ahead of print.

Abstract

Diabetic ketoacidosis (DKA) is a life-threatening complication usually affecting people with type 1 diabetes (T1D) and, less commonly, people with type 2 diabetes. Early identification of ketosis is a cornerstone in DKA prevention and management. Current methods for ketone measurement by people with diabetes include capillary blood or urine testing. These approaches have limitations, including the need to carry testing strips that have a limited shelf life and a requirement for the user to initiate a test. Recent studies have shown the feasibility of continuous ketone monitoring (CKM) via interstitial fluid with a sensor inserted subcutaneously employing an enzymatic electrochemical reaction. Ketone readings can be updated every 5 minutes. In the future, one would expect that commercialized devices will incorporate alarms linked with standardized thresholds and trend arrows. Ideally, to minimize the burden on users, CKM functionality should be integrated with other devices used to implement glucose management, including continuous glucose monitors and insulin pumps. We suggest CKM provision to all at risk of DKA and recommend that the devices should be worn continuously. Those who may particularly benefit are individuals who have T1D, are pregnant, on medications such as sodium-glucose linked transporter (SGLT) inhibitors that increase DKA, people with recurrent DKA, those with T1D undertaking high intensity exercise, are socially or geographically isolated, or those on low carbohydrate diets. The provision of ketone profiles will provide important clinical insights that have previously been unavailable to people living with diabetes and their healthcare professionals.

Keywords: clinical physiology; continuous glucose monitoring; glycaemic control; type 1 diabetes.