Challenges and Modification Strategies on High-Voltage Layered Oxide Cathode for Sodium-Ion Batteries

ChemSusChem. 2024 Sep 24:e202401666. doi: 10.1002/cssc.202401666. Online ahead of print.

Abstract

Sodium-ion batteries (SIBs) have attracted great attention due to their advantages on resource abundance, cost and safety. Layered oxide cathodes (LOCs) of SIBs possess high theoretical capacity, facile synthesis and low cost, and are promising candidates for large scale energy storage application. Increasing operating voltage is an effective strategy to achieve higher specific capacity and also high energy density of SIBs. However, at high operating voltages, LOCs will undergo a series of phase transitions in bulk phase, leading to huge change of volume and layer spacings accompanied by severe lattice stress and cracking formation. Degeneration of surface also occurs between LOCs and electrolytes, resulting in sustained growth of cathode electrolyte interphase (CEI) and release of O2 and CO2. These induce structural destruction and electrochemical performance degradation in high voltage regions. Recently, many strategies have been proposed to improve electrochemical performance of LOCs under high voltages, including bulk element doping, structural design, surface coating and gradient doping. This review describes pivotal challenges and occurrence mechanisms at high voltages, and summarizes strategies to improve stability of bulk and surface. Viewpoints will be provided to promote development of high energy density SIBs.

Keywords: Cathodes; Electrochemistry; High voltage; Layered oxides; Sodium-ion batteries.

Publication types

  • Review