β3-Tryptophans by Iron-Catalyzed Enantioselective Amination of 3-Indolepropionic Acids

Org Lett. 2024 Sep 23. doi: 10.1021/acs.orglett.4c03130. Online ahead of print.

Abstract

A straightforward and general strategy for the catalytic asymmetric synthesis of β3-tryptophans by carboxylic-acid-directed intermolecular C-H amination has been developed. The iron-catalyzed C-H amination of 3-indolepropionic acids with BocNHOMs (Boc, tert-butyloxycarbonyl; OMs, methylsulfonate) in the presence of the base piperidine provides N-Boc-protected β3-tryptophans in a single step with high enantiomeric excess (ee) of up to >99%. Mechanistic experiments and density functional theory calculations support a mechanism through carboxylate-directed iron-mediated C(sp3)-H nitrene insertion. The method incorporates two key sustainability criteria: the use of iron as an abundant, non-toxic, and environmentally benign metal, along with the achievement of streamlined enantioselective C-H functionalization.