Effects of biochar and compost on the abundant and rare microbial communities assembly and multifunctionality in pesticide-contaminated soil under freeze‒thaw cycles

Environ Pollut. 2024 Sep 20:362:125003. doi: 10.1016/j.envpol.2024.125003. Online ahead of print.

Abstract

Biochar and compost are effective ways to improve soil quality and reduce pesticide pollution. However, the effects of them on the abundant and rare microbial communities in freeze‒thaw soil need to be further clarified. Therefore, this study took biochar, compost, and their combination as examples to explore their effects on the abundant and rare microbial communities and multifunctionality in glyphosate, imidacloprid and pyraclostrobin contaminated soil under freeze‒thaw cycles. We found that freeze‒thaw cycles enhanced the functional groups and surface aromaticity of biochar and compost, thereby improving the adsorption capacity. Biochar and compost reduced the concentration and half-life of three pesticides and enhanced the degradation function of rare taxa in soil. Biochar and compost improved the structure composition and co-occurrence relationship of abundant and rare taxa. Meanwhile, the assembly processes of abundant and rare sub-communities were mainly driven by stochastic processes and the Combined treatment promoted the transition from dispersal limitation to homogenizing dispersal and homogeneous selection. Moreover, the Combined treatment significantly improved the multifunctionality before and after freezing and thawing by increasing the diversity of rare taxa and assembly processes. The results provide new insights for farmland soil remediation in seasonal frozen areas, especially the soil functional cycle of abundant and rare microorganisms.

Keywords: Abundant and rare taxa; Adsorption capacity; Degradation; Multifunctionality.