Can the preoperative CT-based deep learning radiomics model predict histologic grade and prognosis of chondrosarcoma?

Eur J Radiol. 2024 Sep 17:181:111719. doi: 10.1016/j.ejrad.2024.111719. Online ahead of print.

Abstract

Background and purpose: Computed tomography (CT) and biopsy may be insufficient for preoperative evaluation of the grade and outcome of patients with chondrosarcoma. The aim of this study was to develop and validate a CT-based deep learning radiomics model (DLRM) for predicting histologic grade and prognosis in chondrosarcoma (CS).

Methods: A multicenter 211 (training cohort/ test cohort, 127/84) CS patients were enrolled. Radiomics signature (RS), deep learning signature (DLS), and DLRM incorporating radiomics and deep learning features were developed for predicting the grade. Kaplan-Meier survival analysis was used to assess the association of the model-predicted grade with recurrence-free survival (RFS). Model performance was evaluated with the area under the receiver operating characteristic curve (AUC) and the Harrell's concordance index (C-index).

Results: The DLRM (AUC, 0.879; 95 % confidence interval [CI], 0.802-0.956) outperformed (z = 2.773, P=0.006) the RS (AUC, 0.715;95 % CI, 0.606-0.825) in predicting grade in the test cohort. RFS showed significant differences (log-rank test, P<0.05) between low-grade and high-grade patients stratified by DLRM. The DLRM achieved a higher C-index (0.805; 95 % CI, 0.694-0.916) than the RS (0.692, 95 % CI, 0.540-0.844) did in predicting RFS for CS patients in the test cohort.

Conclusion: The DLRM can accurately predict the histologic grade and prognosis in CS.

Keywords: Chondrosarcoma; Deep learning; Grade; Radiomics; Tomography, X-ray computed.