Spinal microglial polarization plays a crucial role in the pathological processes of neuropathic pain following peripheral nerve injury. Accumulating evidence suggests that milk fat globule epidermal growth factor-8 (MFG-E8) exhibits anti-inflammatory effect and regulates microglial polarization through the integrin β3 receptor. However, the impact of MFG-E8 on microglial polarization in the context of neuropathic pain has not yet been investigated. In this study, we evaluated the effect of MFG-E8 on pain hypersensitivity and spinal microglial polarization following spared nerve injury (SNI) of the sciatic nerve in mice. We determined the molecular mechanisms underlying the effects of MFG-E8 on pain hypersensitivity and spinal microglial polarization using pain behavior assessment, western blot (WB) analysis, immunofluorescence (IF) staining, quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and small interfering RNA (siRNA) transfection. Our findings indicate that SNI significantly increased the levels of MFG-E8 and integrin β3 expressed in microglia within the spinal cord of mice. Additionally, we observed that intrathecal injection of recombinant human MFG-E8 (rhMFG-E8) alleviated SNI induced-mechanical allodynia and thermal hyperalgesia. Furthermore, the results suggested that rhMFG-E8 facilitated M2 microglial polarization and ameliorated neuroinflammation via integrin β3/SOCS3/STAT3 pathway in the spinal cord of mice with SNI. Importantly, these effects were negated by integrin β3 siRNA, or SOCS3 siRNA. These results demonstrate that MFG-E8 ameliorates peripheral nerve injury induced-mechanical allodynia and thermal hyperalgesia by driving M2 microglial polarization and mitigating neuroinflammation mediated by integrin β3/SOCS3/STAT3 pathway in the spinal cord of mice. MFG-E8 may serve as a promising target for the treatment of neuropathic pain.
Keywords: MFG-E8; Microglial polarization; Neuroinflammation; Neuropathic pain; SOCS3; STAT3.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.