Pressure ulcers (PUs) have emerged as a significant burden on both individuals and society. Effective treatment of PUs is a significant clinical challenge due to the compromised tissue microenvironment characterized by extracellular matrix (ECM) depletion, increased levels of reactive oxygen species (ROS), excessive inflammation and impaired angiogenesis. To this end, we have developed a glucomannan hydrogel (GM-Pgel) that mimics the skin's extracellular matrix to accelerate wound healing by regulating chronic inflammation in the PUs. This hydrogel not only faithfully replicates the components and nanofibrous architecture of ECM-like glycoproteins but also exhibits remarkable capabilities in enhancing neovascularization, scavenging ROS, and promoting macrophage polarization toward the M2 phenotype. In summary, this ECM-mimetic multifunctional hydrogel emerges as a promising dressing with diverse functionalities, capable of reshaping the compromised tissue environment without the need for additional drugs, exogenous cytokines, or cells. This presents a compelling and effective strategy for the repair and regeneration of chronic cutaneous wounds.
Keywords: ECM-mimetic glucomannan hydrogel; Macrophage polarization; Promoting angiogenesis; Scavenging ROS.
Copyright © 2024 Elsevier B.V. All rights reserved.