Rod-shaped micropatterning enhances the electrophysiological maturation of cardiomyocytes derived from human induced pluripotent stem cells

Stem Cell Reports. 2024 Oct 8;19(10):1417-1431. doi: 10.1016/j.stemcr.2024.08.005. Epub 2024 Sep 19.

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer great potential for drug screening and disease modeling. However, hiPSC-CMs remain immature compared to the adult cardiac cells. Cardiomyocytes isolated from adult human hearts have a typical rod-shaped morphology. Here, we sought to develop a simple method to improve the architectural maturity of hiPSC-CMs by using a rod-shaped cell micropatterned substrate consisting of repeated rectangles (120 μm long × 30 μm wide) surrounded by a chemical cell repellent. The generated hiPSC-CMs exhibit numerous characteristics similar to adult human cardiomyocytes, including elongated cell shape, well-organized sarcomeres, and increased myofibril density. The improvement in structural properties correlates with the enrichment of late ventricular action potentials characterized by a more hyperpolarized resting membrane potential and an enhanced depolarization consistent with an increased sodium current density. The more mature hiPSC-CMs generated by this method may serve as a useful in vitro platform for characterizing cardiovascular disease.

MeSH terms

  • Action Potentials*
  • Cell Culture Techniques / methods
  • Cell Differentiation*
  • Cells, Cultured
  • Electrophysiological Phenomena
  • Humans
  • Induced Pluripotent Stem Cells* / cytology
  • Induced Pluripotent Stem Cells* / metabolism
  • Myocytes, Cardiac* / cytology
  • Myocytes, Cardiac* / metabolism