Solution combustion (SC) remains among the most promising synthetic strategies for the production of crystalline nanopowders from an aqueous medium, due to its easiness, time and cost-effectiveness, scalability and eco-friendliness. In this work, this method was selected to obtain anisometric ceria-based nanoparticles applied as catalysts for the direct synthesis of dimethyl carbonate. The catalytic performances were studied for the ceria and Fe-doped ceria from SC (CeO2-SC, Ce0.9Fe0.1O2-SC) in comparison with the ceria nanorods (CeO2-HT, Ce0.9Fe0.1O2-HT) obtained by hydrothermal (HT) method, one of the most studied systems in the literature. Indeed, the ceria nanoparticles obtained by SC were found to be highly crystalline, platelet-shaped, arranged in a mosaic-like assembly and with smaller crystallite size (≈6 nm vs. ≈17 nm) and higher surface area (80 m2 g-1 vs. 26 m2 g-1) for the undoped sample with respect to the Fe-doped counterpart. Although all samples exhibit an anisometric morphology that should favor the exposition of specific crystalline planes, HT-samples showed better performances due to higher oxygen vacancies concentration and lower amount of strong basic and acid sites.
Keywords: CO2 chemical conversion; Ceria nanoparticles; Dimethyl carbonate; Heterogeneous catalysis; Solution combustion.
© 2024 The Author(s). ChemPlusChem published by Wiley-VCH GmbH.