Environmental persistent free radicals (EPFRs) derived from chlorophenols, triggered by light or heat exposure, pose significant ecological concerns, yet the impact of chlorine substituents on EPFRs formation and reactivity remains inadequately understood. Through an intentional synthesis of chlorophenol-derived EPFRs with varying chlorine contents and positioning, we elucidated the role of chlorine in the photoactivation of molecular oxygen. Our combined experimental and theoretical analysis reveals that these EPFRs are primarily oxygen-centered phenoxy radicals, establishing a direct link between chlorine substitution patterns and their ability to activate molecular oxygen under visible light. Increased chlorine content enhances EPFRs formation by elevating the positive charge on the phenolic hydroxyl group's hydrogen atom, facilitating its removal. Moreover, the capability of EPFRs to activate molecular oxygen was directly correlated with chlorine content, with 2,3,5,6-tetrachlorophenol-derived EPFRs showcasing the highest activity. This activity is attributed to their structural propensity for TCSQ·- species generation. Furthermore, our study established a significant correlation between the toxicity and activity of EPFRs, emphasizing the critical role of halogen substituents in determining the reactivity of EPFRs. These insights contribute to our understanding of their environmental and toxicological ramifications, underscoring the imperative for continued research aimed at mitigating their detrimental impacts.
Keywords: Environmental persistent free radicals; Molecular oxygen activation; Polychlorophenol; Reactive oxygen species; Visible light.
Copyright © 2024 Elsevier B.V. All rights reserved.